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Abstract 

Numerical solutions for the displacement functions in SiC are determined from the coupled integro-differential equations 
governing the total number of type-j atoms displaced in the collision cascade initiated by a primary knock-on atom (PKA) of 
type-/ and energy E. Atomic scattering cross sections based on either the inverse power law screening potentials or the 
Ziegler, Biersack, and Littmark (ZBL) universal screening potential are used in the calculation of the displacement functions. 
The electronic stopping powers used in the calculations are either derived from the LSS and Bethe-Bloch theories or 
generated from the SRIM-96 electronic stopping power data base. The displacement functions determined using LSS/Be- 
the-Bloch electronic stopping powers are 25 to 100% larger than the displacement functions determined using the electronic 
stopping powers generated by SRIM-96. The total number of displaced atoms determined numerically for each PKA type, 
based on ZBL scattering cross sections and SRIM-96 electronic stopping powers, is in excellent agreement, over the entire 
range of PKA energies (10 eV to 10 MeV), with the total number of displacements determined by full cascade Monte Carlo 
simulations using the TRIM code in SRIM-96. 

I. Introduction 

Due to the high thermal conductivity, high-temperature 
stability, chemical inertness and small neutron capture 
cross-section of silicon carbide (SIC), there is increasing 
interest in SiC based materials for nuclear applications. 
SiC composites are proposed as low-activation structural 
components in fusion reactor systems, and SiC is also 
proposed as an inert host matrix for the burnup of excess 
weapons plutonium in nuclear reactors or accelerator-based 
neutron sources. The understanding of irradiation damage 
in SiC (and other materials) involves both neutron-irradia- 
tion studies and ion-beam irradiation studies. Comparison 
and interpretation of the results from these different experi- 
ments involve calculating the total displacement damage 
under each given set of irradiation conditions. 

For neutron irradiations of polyatomic materials, the 
total displacement damage is determined by integrating the 
calculated neutron displacement cross-sections over the 

* Corresponding author. Tel.: + 1-509 375 2299; fax: + 1-509 
375 2186; e-mail: wj_weber@pnl.gov. 

neutron energy spectrum for the given irradiation. The 
neutron displacement cross-sections are generally deter- 
mined using a computer program, such as the SPECOMP 
code developed by Greenwood [1,2], that integrates the 
displacement functions for all possible combinations of 
primary knock-on atoms (PKAs) and matrix atoms over 
libraries of PKA spectra for most elements. Huang and 
Ghoniem [3] have described in detail the determination of 
the displacement functions for SiC and the integration of 
the total displacement functions over the neutron elastic 
scattering cross sections for Si and C to yield the neutron 
displacement cross sections associated with elastic neutron 
scattering in SiC. The displacement functions for poly- 
atomic materials are generally determined by numerical 
solution of the coupled integro-differential equations de- 
fined by Parkin and Coulter [4-6], as was the case in the 
study of Huang and Ghoniem [3]. These equations deter- 
mine the net or total number of displaced atoms; however, 
they do not determine the spatial distribution of the dis- 
placed atoms. 

For ion-beam irradiation studies, the Monte Carlo com- 
puter code TRIM [7-9] (TRansport of Ions in Matter) is 
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widely used to simulate the slowing down and scattering 
of energetic ions. By following a large number of individ- 
ual ions, TRIM determines the implanted-ion distributions 
and the spatial distribution of displaced atoms in 
monoatomic, polyatomic, and multilayered materials. The 
Monte Carlo approach provides a more rigorous treatment 
of the elastic scattering, and current versions of TRIM use 
the Ziegler, Biersack, and Littmark (ZBL) universal 
screening potential [8,9] to calculate the scattering angle 
and energy transfer that results from each binary nuclear 
collision. An additional feature of the TRIM code is that 
the results from neutron transport code calculations (posi- 
tion and recoil statistics for each collision atom) can be 
used to generate a TRIM source file that can be used by 
TRIM (1992 and later versions) to calculate the full recoil 
cascade and total displacements that occur for each PKA. 
Thus, TRIM could be used as an alternative or as a 
complement to codes such as SPECOMP for neutron 
irradiations. 

TRIM-95, the program package that includes TRIM, 
was originally used in these calculations for SiC [10] and 
included a significant revision of the data base that is used 
to generate stopping powers for monoatomic and poly- 
atomic materials. Due to a bug in the stopping power 
program of TRIM-95, the electronic stopping powers for 
solid forms of gases (or solids containing gas species) 
were in error at low energies (by over 200% at energies 
below 25 eV [11]). In the case of SiC, the TRIM-95 
electronic stopping powers for C and Si ions were in error 
by 100% at the lower energy range of the calculations in 
this study. This problem has been corrected in the 1996 
version of this program package, which has been renamed 
SRIM (Stopping and Range of Ions in Matter) to distin- 
guish it from the Monte Carlo code TRIM that is also 
included. 

The computational approaches used to determine total 
displacements in polyatomic materials under neutron irra- 
diation and under ion-beam irradiation are different; how- 
ever, both approaches assume the binary collision approxi- 
mation that treats PKA trajectories as a series of two-body 
collisions. For neutron irradiation of polyatomic materials, 
numerical solutions of the integro-differential equations of 
Parkin and Coulter [4-6] determine the displacement func- 
tions used to calculate total displacements, and the two- 
body atomic scattering cross sections used in these calcula- 
tions are generally approximated by analytical fits to di- 
mensionless scattering functions that are derived for differ- 
ent forms of the screening potential. In the case of ion-beam 
irradiations of polyatomic materials, more rigorous Monte 
Carlo methods, generally using TRIM and the ZBL univer- 
sal potential [8,9], are used to determine the spatial distri- 
bution of displaced atoms, as well as the total number of 
displacements. The Monte Carlo code TRIM follows the 
trajectories of each incident ion and all recoils. Changes in 
direction are the result of binary nuclear collisions that are 
governed by the classical equations of motion for a particle 

in a central-force field [9,12] defined by the interatomic 
screening potential (i.e., the ZBL potential). Energy is lost 
in discrete amounts in the nuclear collisions and continu- 
ously from electronic interactions (i.e., the electronic stop- 
ping power). The trajectories for a large number of inci- 
dent ions or PKAs must be calculated using TRIM to 
achieve high statistics, which can require long computation 
time. 

The major differences in these two approaches to deter- 
mining total displacements are the method of solution 
(analytical versus Monte Carlo) and the choice of inter- 
atomic screening potentials (or derived atomic scattering 
cross sections) and electronic stopping powers. If the total 
number of displaced atoms calculated by the two ap- 
proaches differ significantly, there will be a systematic 
error when comparing (on the basis of total displaced 
atoms) neutron-irradiation results with the results from 
ion-beam-irradiation studies. The objective of the present 
paper is to determine the total displacement functions for 
SiC by solving numerically the coupled integro-differen- 
tial equations defined by Parkin and Coulter [4-6], using 
different atomic scattering cross sections and electronic 
stopping powers, and to compare the results with the total 
number of displaced atoms determined by full cascade 
Monte Carlo simulations using the TRIM code in SRIM-96. 

2. Theory 

2. I. Net displacement function 

The displacement function, Pij(E), for polyatomic ma- 
terials is the average number of type-j atoms displaced in a 
collision cascade initiated by a type-i PKA of energy E 
and is generally described by an integro-differential equa- 
tion originally defined by Parkin and Coulter [4-6]. In this 
paper, the equivalent notation of Huang and Ghoniem [3] 
for describing t, ij(E) is followed, with the integro-dif- 
ferential equation given by 

Si(E) dVij(E)dE ~ fk foA~kEdTd°-ik~ 'T)  

×(F(T- Eke)[ akj + Pkj(T)] 

+ r ( e  - T- Ej~/a~j) ~j(E- T) - ~j(E)) (l) 

where Si(E) is the electronic stopping power of type i 
atoms in the polyatomic material, fk is the atomic fraction 
of type k atoms in the material, Aik is the kinematic 
energy transfer efficiency between atoms of type i and k, 
F(x) is the step function, ~kj is the Kronecker delta 
function, Ekd is the displacement threshold energy for 
atoms of type k in the material, and o-ik (E, T) is the 
atomic scattering cross section of type i atoms with energy 
E that transfers energy T to atoms of type k. The kine- 
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matic energy transfer efficiency, A~k, in Eq. (1) is the 
maximum fraction of energy that can be transferred from 
an atom of type i to an atom of type k and is given by 

4AiA k 
Aik - (2) 

( a i + a k )  2 

where A~ and A k are the atomic weights, respectively. 
Since Eq. (1) for uij(E) also contains pkj(E) terms, it is 
coupled to equivalent equations for each type-k PKA 
(k ~ i). For a two-component material, as in the present 
study, there are two coupled integro-differential equations 
for each PKA of type i, one for 1Jij (E) and one for 1Jj](E), 
that must be solved simultaneously. 

The coupled integro-differential equations represented 
by Eq. (1) can be solved simultaneously by numerical 
methods. A computer code was developed to numerically 
integrate these equations for materials containing several 
atom types and for different forms of the atomic scattering 
cross sections and electronic stopping powers. Analogous 
to the work of Huang and Ghoniem [3], the basic method 
of numerical integration was a fifth order Runge-Kutta 
[13] integration that maintained an accuracy of 0.001% by 
automatic adjustment of step size. The integrations were 
subject to the boundary condition that v~j(E)= 0 for 
E <_ Eid/A~j. The computer code was written in Fortran 
and runs on a Power Macintosh computer. Typical compu- 
tations for energies up to 107 eV required less than 5 min 
to run with a 66 MHz processor. 

2.2. Electronic stopping powers 

The electronic stopping power, Si(E), of type-/ atoms 
in a polyatomic material can be estimated from Bragg's 
Rule [14], which states that Sz(E) is related to the linear 
sum, over all atom types, of electronic stopping powers, 
Sk(E), of type-/ atoms in monoatomic type-k targets. 
According to Bragg's Rule, S~(E), with units of eV 
cm2/atom, is given by the expression: 

powers for polyatomic materials. Huang and Ghoniem [3] 
in their study of displacement functions in SiC also em- 
ployed Bragg's Rule; however, they used the LSS theory 
to calculate the electronic stopping power at low to inter- 
mediate energies and the Bethe-Bloch theory at high 
energies. In order to cover the entire energy range and to 
provide a realistically smooth transition, Huang and 
Ghoniem bridged the LSS and Bethe-Bloch stopping pow- 
ers according to the procedure outlined by Biersack and 
Haggmark [21]. As an integral part of the numerical code 
developed under this study, both the LSS and Bethe-Bloch 
electronic stopping powers for polyatomic materials are 
calculated according to Eq. (3) and then bridged using the 
Biersack and Haggmark method [21] to provide a smooth 
transition. The calculated LSS, Bethe-Bloch, and bridged 
LSS/Bethe-Bloch electronic stopping powers for C and 
Si ions in SiC are shown in Figs. 1 and 2, respectively. 

The electronic stopping power calculated by SRIM-96 
for 2.0 MeV He ions in SiC is in excellent agreement 
(within 2.5%) with the experimental values [20]. For ions 
other than H and He, SRIM calculates electronic stopping 
powers by scaling proton electronic stopping powers, as 
described by Ziegler [9]. The electronic stopping powers 
calculated by SRIM-96 for C ions in SiC (Fig. 1) and used 
in the TRIM calculations are larger than the bridged 
LSS/Bethe-Bloch electronic stopping powers over the 
entire energy range of interest (102 to l 0  7 eV); this 
difference will affect the calculated displacement func- 
tions, as described below. The SRIM-96 electronic stop- 
ping powers for Si ions in SiC (Fig. 2) that are used in 
TRIM are in good agreement with the LSS/Bethe-Bloch 
stopping powers for energies below l MeV. Above 1 
MeV, the SRIM-96 stopping powers for Si ions in SiC are 
larger than the LSS/Bethe-Bloch stopping powers; how- 
ever, since the atomic scattering cross sections are very 
small at these energies, the differences in electronic stop- 
ping powers for Si ions should have only a small effect on 
the numerical solutions. In order to compare the effects of 

s i ( e )  = E f k s , k ( e )  ( 3 )  

k 

where J~, is the atomic fraction. The stopping powers, 
Sik(E), for different materials can be obtained from experi- 
mental data, the tables of Northcliffe and Schilling [15], 
the electronic stopping theories of Lindhard, Scharff and 
Schictt (LSS) [16,17] and Bethe-Bloch [18,19], or the 
output of SRIM-96 (or previous TRIM versions). Baglin 
and Ziegler [20] have shown that for 2.0 MeV He ions the 
measured stopping powers in single crystal (3C and 6H) 
and polycrystalline SiC are within 2% of the stopping 
power predicted by Bragg's Rule from the measured stop- 
ping powers in silicon and carbon. In the studies of Parkin 
and Coulter [4-6], Bragg's Rule coupled with LSS elec- 
tronic stopping powers was used to define the stopping 
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Fig. 1. Calculated electronic stopping powers for C ions in SiC. 
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Fig. 2. Calculated electronic stopping powers for Si ions in SiC. 

the different stopping powers, the SRIM-96 electronic 
stopping powers for SiC have been tabulated and used as a 
data source file in the numerical code to determine the 
displacement functions. Other values for the electronic 
stopping powers (theoretical, experimental, etc.) also could 
be tabulated into a data source file and used in the 
numerical calculations. 

2.3. Atomic scattering cross sections 

The atomic scattering cross section in Eq. (1) is depen- 
dent on the form of the screened potential used to describe 
the forces between the interacting atoms. Winterbon, Sig- 
mund and Sanders (WSS) [22] have shown that the atomic 
scattering cross section based on the Thomas-Fermi poten- 
tial can be approximated by matching scattering cross 
sections based on inverse power law potentials. A modi- 
fied form of the WSS power law cross section [23] was 
used by Huang and Ghoniem [3] to calculate the displace- 
ment functions for SiC. The modified WSS atomic scatter- 
ing cross section for SiC, as defined by Huang and 
Ghoniem [3], was used initially in the present study, as it 
allowed direct comparison to their results during develop- 
ment of the displacement function code. Since the ZBL 
(Ziegler, Biersack, Littmark) universal potential [8,9] is 
used by SRIM-96 in the Monte Carlo (TRIM) calculation 
of atomic scattering events, an analytical approximation to 
the atomic scattering cross section, based on the ZBL 
universal potential [8], is used in all other calculations of 
the displacement functions for SiC. The ZBL differential 
atomic scattering cross section, in terms of the LSS re- 
duced units, can be expressed as 

7ra2u f ( t  1/2) 
d~rik( E, T)  = 2 t 3 / ~  dt (4) 

where a u is the ZBL universal screening length, t is the 
dimensionless collision parameter, and f ( t  1/2) is the scat- 

tering function that is defined by the ZBL universal poten- 
tial. The parameters a ,  and t are given by 

0.8854a,, 
a~ (Z?.23 + Z~!23 ) (5) 

and 

A k a~ 
t = E T A i  2 2 4 ( 6 )  

4 Z i Z k e 

where a o is the Bohr radius, Z i and Z k are the atomic 
numbers, and A i and A k are the atomic weights of atoms 
of type i and k, respectively. An analytical approximation 
to the scattering function, which was originally derived by 
Winterbon et al. [22] for a Thomas-Fermi potential and 
recently fitted by Nastasi, Mayer and Hirvonen [25] for the 
ZBL universal potential, is given by 

f(t '/2) : At ̀ 1/2 ")[1 + (2At (' m))q] -I/q (7) 

where the fitting parameters A, m, and q are given by the 
values 5.012, 0.203, and 0.414, respectively, for the ZBL 
universal potential. (For the Thomas-Fermi potential, A, 
m, and q are given by the values 1.309, 1/3,  and 2 /3 ,  
respectively [22].) 

2.4. Displacement threshold energies 

Solutions to the coupled integro-differential equations 
are dependent on the displacement threshold energies, EJ0' 
used. The displacement threshold energies in SiC are 
controversial; however, in the comparison of the computa- 
tional methods in this paper, the exact values are less 
important than the consistent use of the same values in all 
calculations. In the present study, the displacement thresh- 
old energies, Ed(C) and Ea(Si), assumed for C and Si in 
SiC are 16.3 and 92.6 eV, respectively. These values were 
determined using molecular dynamics simulation tech- 
niques [24] and are the same values used in the study of 
Huang and Ghoniem [3]. Other values can be easily incor- 
porated into the calculations to evaluate the effects on 
damage stoichiometry or to determine displacement cross 
sections once the displacement threshold energies are bet- 
ter defined for SiC. 

3. Results and discussion 

3.1. Numerical solutions 

Numerical solutions to Eq. (1) for the displacement 
functions, vij(E), in SiC have been calculated using the 
modified WSS power law cross sections [3] and the 
LSS/Bethe-Bloch electronic stopping powers (Figs. 1 and 
2). The results, which are shown in Fig. 3, are about a 
factor of two lower than the results previously calculated 
by Huang and Ghoniem [3]. The reason for this difference 
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Fig. 3. Displacement functions, ~,q(E), in SiC calculated using the 
bridged LSS/Bethe-Bloch electronic stopping powers (Figs. 1-2) 
and the modified WSS power law cross sections [3]. 
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Fig. 5. Displacement functions, vH(E), in SiC calculated using the 
SRIM-96 electronic stopping powers (Figs. 1-2) and the ZBL 
atomic scattering cross sections [8]. 

is not known. In Fig. 4, numerical solutions for vij(E) in 
SiC based on using the ZBL scattering cross sections, 
defined by Eq. (4), and the LSS/Bethe-Bloch  electronic 
stopping powers are shown. Numerical solutions based on 
using the ZBL scattering cross sections and the electronic 
stopping powers generated by SRIM-96 are shown in Fig. 
5. (Note: numerical calculations using cross sections based 
on Eq. (7) for the Thomas-Fermi potential are within 20% 
of the ZBL results over the entire energy range considered.) 

The results in Figs. 3 -5  show that vij(E) goes to zero 
at E # / A  u in accordance with the boundary conditions, 
with ~,u(E) for like atoms (i.e., i = j )  going to zero at Ejd 
, since A~ i = 1 under this condition. The results also show 
that the number of C atoms displaced by each PKA type is 
about a factor of 6 larger than the number of displaced Si 
atoms due to the lower displacement threshold energy used 
for C (16.3 eV) than used for Si (92.6 eV) in these 
calculations. At energies above about 0.2 MeV, the dis- 
placement functions all begin to saturate as the atomic 
scattering cross sections go to zero. 
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Fig. 4, Displacement functions, u,j(E), in SiC calculated using the 
bridged LSS/Bethe-Bloch electronic stopping powers (Figs. 1-2) 
and the ZBL atomic scattering cross sections [8]. 

For the two cases where the LSS/Be the-Bloch  elec- 
tronic stopping powers are used in the numerical calcula- 
tions, the displacement functions based on the ZBL scatter- 
ing cross sections (Fig. 4) are indistinguishable from the 
results based on the modified WSS power law cross 
sections (Fig. 3) for C PKA energies below 20 keV and for 
Si PKA energies below 100 keV. This result indicates a 
negligible effect in this energy range from the differences 
in the approximations to the scattering cross sections. At 
higher energies, the displacement functions for the ZBL 
scattering cross sections are about 40% lower than the 
results for the modified WSS cross sections; this is not 
surprising, since the ZBL scattering cross sections decrease 
more rapidly at high energies than the WSS power law 
cross sections. 

Where the ZBL atomic scattering cross sections are 
used in the numerical calculations, the displacement func- 
tions (Fig. 4) based on LSS/Be the-Bloch  stopping pow- 
ers are slightly larger than the displacement functions (Fig. 
5) based on SRIM-96 electronic stopping powers over the 
entire energy range of the calculations. As discussed above, 
the electronic stopping powers for Si in SiC are in good 
agreement below 1 MeV (Fig. 2), and above this energy, 
the effects of any differences in electronic stopping powers 
should be negligible. Consequently, the differences be- 
tween the results in Fig. 4 and the results in Fig. 5, which 
range from < 25% for Si PKAs and Si displacements to 
100% for C PKAs and C displacements, are due to the 
larger values of the SRIM-96 electronic stopping power 
for C in SiC relative to the LSS/Bethe-Bloch  stopping 
power (Fig. 1). The largest difference in the displacement 
functions occurs above 0.1 MeV, where the differences in 
electronic stopping powers for C in SiC are greatest. 
Above 1 MeV, the atomic scattering cross sections for the 
ZBL potential decrease rapidly, and the effects of differ- 
ences in the electronic stopping powers saturate, with no 
additional effects discernable. 
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3.2. Monte Carlo calculations 

Monte Carlo calculations using TRIM do not include 
each u~j(E) specifically in the output; instead the sum of 
the total displacements, including replaced atoms, (vi~(E) 

+ ~,~j(E)) for each incident ion of energy E is provided. In 
order to compare the two methods of calculation, the 
numerical results in Figs. 3-5  are summed for each PKA 
type, and the results are shown in Figs. 6 and 7 for C and 
Si PKAs, respectively, along with the results of full cas- 
cade Monte Carlo calculations using the TRIM code in 
SRIM-96. A minimum of ten thousand ions were calcu- 
lated for each value of ion energy to obtain good statistics. 
The differences in the numerical solutions, discussed above, 
are more clearly seen in the comparison of results in Figs. 
6 and 7. A significant effect of the differences in atomic 
scattering cross sections is observed only at the higher 
energies ( >  20 keV for C ions and > 100 keV for Si ions) 
and, as noted, is due to the more rapid decrease of the ZBL 
scattering cross sections at these energies. 

The effect of using the SRIM-96 electronic stopping 
powers is to decrease the calculated number of total dis- 
placed atoms relative to those calculated using the 
LSS/Be the-Bloch  electronic stopping powers. The SRIM 
calculations of electronic stopping powers are based on 
recent theoretical developments and updated data bases. 
The accuracy of the LSS electronic stopping powers, how- 
ever, is only about a factor of 2, since the theory does not 
allow for any shell structure in the target atoms [9]. 
Consequently, the more accurate SRIM electronic stopping 
powers should be considered for use in neutron damage 
calculations, particularly if comparisons with ion-beam 
results are to be made. 

The total number of displaced atoms determined nu- 
merically for both C and Si PKAs (Figs. 6 and 7), based 
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Fig. 6. Total number of displaced atoms for a C PICA of energy E 
in SiC. Comparison of numerical solutions to Eq. (1), using WSS 
power law or ZBL universal scattering cross sections and 
LSS/Bethe-Bloch (LSS/BB) or SRIM-96 electronic stopping 
powers, and results of Monte Carlo calculations using TRIM in 
SRIM-96. 
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Fig. 7. Total number displaced atoms for a Si PKA of energy E in 
SiC. Comparison of numerical solutions to Eq. (1), using WSS 
power law or ZBL universal scattering cross sections and 
LSS/Bethe-Bloch (LSS/BB) or SRIM-96 electronic stopping 
powers, and results of Monte Carlo calculations using TRIM in 
SRIM-96. 

on ZBL atomic scattering cross sections and SRIM-96 
electronic stopping powers, is in excellent agreement, over 
the entire range of PKA energies (10 eV to 10 MeV), with 
the total number of displacements determined by rigorous 
Monte Carlo simulations using the TRIM code in SRIM-96. 
These results confirm the validity of the numerical solu- 
tions. Thus, numerical determinations of neutron displace- 
ment functions using the ZBL scattering cross sections and 
SRIM electronic stopping powers are not only more accu- 
rate for polyatomic materials, such as SiC, but also allow 
the comparison of neutron and ion-beam irradiation results 
to be made with greater confidence. 

4. Summary 

The differences in the ZBL and WSS power law scat- 
tering cross sections have a small effect on the total 
displacement functions for C PKA energies below 20 keV 
and for Si PKA energies below 100 keV. At higher 
energies, displacement functions based on the ZBL scatter- 
ing cross sections will tend to be up to 40% less than the 
displacement functions calculated using the WSS power 
law cross sections, due to the more rapid decrease in the 
ZBL scattering cross sections at these energies. 

Differences in the electronic stopping powers have the 
largest effect on the determination of the total displace- 
ment functions in SiC. The electronic stopping powers 
generated by SRIM-96 for C and Si ions in SiC are 
considered more accurate. The SRIM-96 electronic stop- 
ping powers for C in SiC are larger than the electronic 
stopping powers calculated by bridging the LSS and 
Bethe-Bloch stopping powers; the SRIM-96 stopping 
powers for Si in SiC, however, are in reasonable agree- 
ment with the bridged LSS/Bethe-Bloch  stopping pow- 
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ers. The larger electronic stopping powers for C signifi- 
cantly decrease (up to 50%) the total displacement func- 
tions. Since most neutron displacement cross sections for 
materials are based on using LSS or bridged L S S / B e t h e -  
Bloch electronic stopping powers, the results suggest there 
may be a systematic 25 to 100% difference in calculated 
dose when comparing neutron-irradiation results on SiC 
with ion-beam-irradiation results. The differences in calcu- 
lated dose are greatly reduced if the same electronic 
stopping powers (and the same atomic scattering cross 
sections) are used as the basis for calculations of total 
displacements under both neutron and ion-beam irradia- 
tions. 
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